Drosophila Syncrip binds the gurken mRNA localisation signal and regulates localised transcripts during axis specification
نویسندگان
چکیده
In the Drosophila oocyte, mRNA transport and localised translation play a fundamental role in axis determination and germline formation of the future embryo. gurken mRNA encodes a secreted TGF-α signal that specifies dorsal structures, and is localised to the dorso-anterior corner of the oocyte via a cis-acting 64 nucleotide gurken localisation signal. Using GRNA chromatography, we characterised the biochemical composition of the ribonucleoprotein complexes that form around the gurken mRNA localisation signal in the oocyte. We identified a number of the factors already known to be involved in gurken localisation and translational regulation, such as Squid and Imp, in addition to a number of factors with known links to mRNA localisation, such as Me31B and Exu. We also identified previously uncharacterised Drosophila proteins, including the fly homologue of mammalian SYNCRIP/hnRNPQ, a component of RNA transport granules in the dendrites of mammalian hippocampal neurons. We show that Drosophila Syncrip binds specifically to gurken and oskar, but not bicoid transcripts. The loss-of-function and overexpression phenotypes of syncrip in Drosophila egg chambers show that the protein is required for correct grk and osk mRNA localisation and translational regulation. We conclude that Drosophila Syncrip is a new factor required for localisation and translational regulation of oskar and gurken mRNA in the oocyte. We propose that Syncrip/SYNCRIP is part of a conserved complex associated with localised transcripts and required for their correct translational regulation in flies and mammals.
منابع مشابه
The mago nashi gene is required for the polarisation of the oocyte and the formation of perpendicular axes in Drosophila
BACKGROUND Drosophila axis formation requires a series of inductive interactions between the oocyte and the somatic follicle cells. Early in oogenesis, Gurken protein, a member of the transforming growth factor alpha family, is produced by the oocyte to induce the adiacent follicle cells to adopt a posterior cell fate. These cells subsequently send an unidentified signal back to the oocyte to i...
متن کاملAxis formation during Drosophila oogenesis.
Recent advances shed light on the cellular processes that cooperate during oogenesis to produce a fully patterned egg, containing all the maternal information required for embryonic development. Progress has been made in defining the early steps in oocyte specification and it has been shown that progression of oogenesis is controlled by a meiotic checkpoint and requires active maintenance of th...
متن کاملMerlin, the Drosophila homologue of neurofibromatosis-2, is specifically required in posterior follicle cells for axis formation in the oocyte.
In Drosophila, the formation of the embryonic axes is initiated by Gurken, a transforming growth factor alpha signal from the oocyte to the posterior follicle cells, and an unknown polarising signal back to the oocyte. We report that Drosophila Merlin is specifically required only within the posterior follicle cells to initiate axis formation. Merlin mutants show defects in nuclear migration an...
متن کاملProduction of gurken in the nurse cells is sufficient for axis determination in the Drosophila oocyte.
The asymmetric localization of gurken mRNA and protein in the developing Drosophila oocyte defines both the anteroposterior and dorsoventral axes of the future embryo. Understanding the origin of these asymmetries requires knowledge of the source of gurken transcripts. During oogenesis most transcripts in the oocyte are produced by the associated nurse cells, but it has been proposed that gurke...
متن کاملBruno regulates gurken during Drosophila oogenesis
Translational regulation of localized transcripts is a powerful mechanism to control the precise timing and localization of protein expression within a cell. In the Drosophila germline, oskar transcript must be translationally repressed until its localization at the posterior pole of the oocyte, as ectopic production of Oskar causes severe patterning defects. Translational repression of oskar m...
متن کامل